Using U/Ca Ratios to Reconstruct Past Ocean pH

Kari N. McLaughlin, Tessa M. Hill, Laura K. Rademacher, Kristina L. Faul, Sarah B. Myhre

1Department of Earth and Environmental Sciences, University of the Pacific, 2Department of Geology and Bodega Marine Lab, University of California Davis, 3Department of Chemistry, Mills College

Bamboo Corals
- Deep sea corals live in intermediate to deep waters.
- Consist of alternating segments of inorganic calcite interlayers and organic chitinous nodes.
- Long-lived organisms that can grow as old as 350 years.

Coral Collection
Samples collected in 2007 aboard the Western Flyer.

Coral as a Seawater pH Proxy
- [CO₂⁻] in seawater is inversely correlated with total atmospheric CO₂, therefore atmospheric carbon loading is directly correlated to oceanic pH.
- Previous studies document an inverse relationship between U/Ca ratios in the calcite of foraminifera shells and the [CO₂⁻] in seawater (Russell et al. 2004).
- Bamboo coral skeleton U/Ca may exhibit the same relationship to seawater.

Research Question: Can bamboo coral skeletons be used to reconstruct past ocean pH via the inverse correlation between U/Ca and [CO₂⁻]?

Names, Longitudes, Latitudes, Depths, and Locations of Samples

<table>
<thead>
<tr>
<th>Name</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Depth</th>
<th>Diameter</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>T661 A9</td>
<td>-121.084</td>
<td>34.045</td>
<td>792</td>
<td>1.39 cm</td>
<td>Rodriguez Seamount</td>
</tr>
<tr>
<td>T664 A2</td>
<td>-120.887</td>
<td>33.149</td>
<td>1954</td>
<td>1.65 cm</td>
<td>San Juan Seamount</td>
</tr>
<tr>
<td>T1100 A3</td>
<td>23.6497</td>
<td>37.21.5032</td>
<td>1353</td>
<td>1.31 cm</td>
<td>Pioneer Seamount</td>
</tr>
<tr>
<td>T1100 A4</td>
<td>23.6608</td>
<td>37.21.5712</td>
<td>1288.1</td>
<td>3.62 cm</td>
<td>San Juan Seamount</td>
</tr>
<tr>
<td>T1102 A8</td>
<td>43.5632</td>
<td>35.44.3737</td>
<td>1621</td>
<td>1.74 cm</td>
<td>Davidson Seamount</td>
</tr>
<tr>
<td>T1102 A12</td>
<td>43.5632</td>
<td>35.43.8283</td>
<td>1500</td>
<td>1.49 cm</td>
<td>Seamount</td>
</tr>
</tbody>
</table>

Methods
- Hand drill used three times along radius of each coral to obtain powder (See Sverre LeRoy’s poster).
- Standards and samples analyzed UC Santa Cruz’s ICP-MS to determine the U/Ca ratio.
- First trial:
 - Powder in 1% HCL cleaned centrifuge tubes
 - Standards prepared using Optima Grade Fisher Scientific HNO₃
- Second trial:
 - Fisher Scientific trace metal nitric used for cleaning and standards
- Future trials:
 - Standards and samples will be prepared at UCSC

Preliminary Results
- Test sample contains 121.5 ppm CaCO₃.
- 1% nitric blank and P_U·Ca standard analyzed.
- All standards and samples [U] higher than predicted.
- Blank replaced with 1% nitric made at UCSC resulted in low [U] as predicted.
- In future tests, the intensities, in cps, can be translated to concentration.

Immediate Concern
Reduce the amount of U in blank to allow for better precision when measuring concentration of sample.

Further Questions
Is there variability in the U/Ca ratios recorded in the corals?
If so, what is the cause of such variability? Change in O₂, pH, temperature?

Acknowledgments
This experiment was made possible by grants from NSF and NOAA to T.M. Hill, NSF OCE0753226 awarded to S. Williams & E. Sanford and from the support of the following people: Sverre LeRoy, Bob Franke, Peggy Delaney, Russell, A. D., et al. (2004). "Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera." Geochimica et Cosmochimica Acta 68(21): 4347-4361.